tsp_cpp/snippets/Polynomial.tpp

318 lines
7.2 KiB
C++

//
// Created by trotfunky on 09/05/19.
//
#ifndef SNIPPETS_POLYNOMIAL_TPP
#define SNIPPETS_POLYNOMIAL_TPP
#include <vector>
#include <map>
#include <iostream>
#include <math.h>
template <typename T> class Polynomial;
/**
* Class allowing creation, manipulation and calculation of polynomials
* Factors are stored from the lowest power to the highest
* The polynomial has at least one factor, which defaults to zero
* @tparam T Has to be an arithmetic type (std::is_arithmetic<T>::value is true)
*/
template <typename T>
class Polynomial {
public:
Polynomial();
explicit Polynomial(const std::vector<T>&);
explicit Polynomial(const std::map<int,T>&);
template <typename T1>
explicit Polynomial(const Polynomial<T1>&);
int getDegree() const;
Polynomial<T> getNthDerivative(int n) const;
template <typename T1>
bool equals(const Polynomial<T1>&) const;
template <typename T1>
auto add(const Polynomial<T1>& operand) const -> Polynomial<decltype(static_cast<T>(0) + operand[0])>;
template <typename T1>
friend std::ostream& operator<<(std::ostream&, const Polynomial<T1>&);
template<typename T1>
T1 operator()(const T1&) const;
T operator[](int) const;
private:
std::vector<T> factors;
double factorial(unsigned int n) const;
template <typename T2>
friend class Polynomial;
};
////////////////////
/// ///
/// Definitions ///
/// ///
////////////////////
template<typename T>
Polynomial<T>::Polynomial()
{
static_assert(std::is_arithmetic<T>::value,"Polynomial must be of an arithmetic type!");
factors = {0};
}
template<typename T>
Polynomial<T>::Polynomial(const std::vector<T>& polynomialFactors) : Polynomial<T>()
{
if(polynomialFactors.size()>0)
{
factors = polynomialFactors;
}
}
template<typename T>
Polynomial<T>::Polynomial(const std::map<int, T>& polynomialFactors) : Polynomial<T>()
{
int degree = polynomialFactors.rbegin()->first;
if(degree >= 0)
{
factors.pop_back();
}
factors.reserve(degree);
for(int i = 0;i<=degree;i++)
{
auto nextFactor = polynomialFactors.find(i);
if(nextFactor != polynomialFactors.end())
{
factors.push_back(nextFactor->second);
}
else
{
factors.push_back(0);
}
}
}
template <typename T>
template <typename T1>
Polynomial<T>::Polynomial(const Polynomial<T1>& copied)
{
static_assert(std::is_arithmetic<T>::value,"Polynomial must be of an arithmetic type!");
for(const T1& factor : copied.factors)
{
factors.push_back(static_cast<T>(factor));
}
}
/**
* Returns the degree of the polynomial.
* @tparam T Type of the polynomial factors
* @return Degree of the polynomial, -1 if it is the null-polynomial
*/
template<typename T>
int Polynomial<T>::getDegree() const
{
for(int i = factors.size()-1;i>=0;i--)
{
if(factors[i] != 0)
{
return(i);
}
}
return(-1);
}
/**
* Computes the nth derivative of the polynomial
* @tparam T Polyniaml factor type
* @param n Order of the derivative
* @return Derived polynomial, null-polynomial if the order is greater than the degree
*/
template<typename T>
Polynomial<T> Polynomial<T>::getNthDerivative(int n) const
{
if(n<=0)
{
return(Polynomial<T>(*this));
}
if(n>getDegree())
{
return(Polynomial<T>());
}
std::vector<T> newFactors;
for(int i = n;i<factors.size();i++)
{
newFactors.push_back(factors[i]*factorial(i)/factorial(i-n));
}
return(Polynomial<T>(newFactors));
}
template<typename T>
double Polynomial<T>::factorial(unsigned int n) const
{
double value = 1;
for(unsigned int i = 2;i<=n;i++)
{
value *= i;
}
return(value);
}
template<typename T>
template<typename T1>
bool Polynomial<T>::equals(const Polynomial<T1>& operand) const
{
if(getDegree() != operand.getDegree())
{
return(false);
}
if(getDegree() == -1)
{
return(true);
}
const std::vector<T1>& p2Factors = operand.factors;
for(int i = factors.size();i>=0;i--)
{
if(factors[i] != p2Factors[i])
{
return(false);
}
}
return(true);
}
template<typename T>
template<typename T1>
auto Polynomial<T>::add(const Polynomial<T1>& operand) const -> Polynomial<decltype(static_cast<T>(0) + operand[0])>
{
bool isLargest = true;
int largestSize = factors.size();
int smallestSize = operand.factors.size();
if(getDegree() < operand.getDegree())
{
isLargest = false;
smallestSize = factors.size();
largestSize = operand.factors.size();
}
std::vector<decltype(static_cast<T>(0)+operand[0])> resultPolynomial = {};
resultPolynomial.reserve(largestSize);
for(int i = 0;i<smallestSize;i++)
{
resultPolynomial.push_back(factors[i]+operand[i]);
}
for(int i = smallestSize;i<largestSize;i++)
{
resultPolynomial.push_back((isLargest ? factors[i] : operand[i]));
}
return Polynomial<decltype(static_cast<T>(0)+operand[0])>(resultPolynomial);
}
////////////////////
/// ///
/// Operators ///
/// ///
////////////////////
template<typename T1,typename T2>
bool operator==(const Polynomial<T1>& p1, const Polynomial<T2>& p2)
{
return(p1.equals(p2));
}
/**
* Computes the sum of the two polynomials by adding factor by factor at first and pushing back
* the leftover factors from the largest polynomial if their are different in degree.
* @tparam T Type of the first polynomial
* @tparam R Type of the second polynomial
* @param p1 First polynomial
* @param p2 Second polynomial
* @return Sum of the two polynomials, null polynomial if both of them are null. The type is deduced from the addition
* of the first factors of the two polynomials.
*/
template<typename T1, typename T2>
auto operator+(const Polynomial<T1>& p1, const Polynomial<T2>& p2) -> Polynomial<decltype(p1[0] + p2[0])>
{
return(p1.add(p2));
}
template <typename T>
std::ostream& operator<<(std::ostream& ostream, const Polynomial<T>& polynomial)
{
if(polynomial.getDegree() < 0)
{
ostream << "0 ";
return ostream;
}
const std::vector<T>& factors = polynomial.factors;
if(factors[0] > 0)
{
ostream << factors[0] << " ";
}
else if(factors[0] < 0)
{
ostream << std::showpos << factors[0] << " ";
}
for(int i = 1;i<factors.size();i++)
{
if(factors[i] != 0)
{
ostream << std::showpos << factors[i] << "*X^" << std::noshowpos << i << " ";
}
}
return(ostream);
}
template<typename T>
template<typename T1>
T1 Polynomial<T>::operator()(const T1& input) const
{
static_assert(std::is_arithmetic<T1>::value,"Cannot evaluate polynomial at a non arithmetic value !");
if(getDegree() == -1)
{
return(0);
}
T1 returnValue = 0;
for(int i = 0;i<factors.size();i++)
{
returnValue += factors[i] * pow(input,i);
}
return(returnValue);
}
template<typename T>
T Polynomial<T>::operator[](const int index) const
{
return(factors.at(index));
}
#endif //SNIPPETS_POLYNOMIAL_TPP