1
0
Fork 0

Compare commits

..

No commits in common. "b47052aa4d3a48fdb5c17abe423c2fe9da60db69" and "bc9770e233a1f760e5bab872c9ae43cb324815d0" have entirely different histories.

5 changed files with 39 additions and 217 deletions

View file

@ -14,32 +14,15 @@ void Player::move(float dx, float dy)
y += dy;
}
void Player::rotate(float alpha)
void Player::rotate(int alpha)
{
orientation += fmodf(alpha, 360);
if(orientation > 360)
orientation += alpha%360;
if(orientation >= 360)
{
orientation -= 360;
}
else if(orientation < 0)
if(orientation <= 360)
{
orientation += 360;
}
/*
* Rotate the movement vector along the new angle, assumes that the only
* speed influencing the player is its own movement.
*/
float prevSpeedX = currentMoveSpeedX;
float prevSpeedY = currentMoveSpeedY;
currentMoveSpeedX = cosf(-alpha * deg_to_rad) * prevSpeedX
- sinf(-alpha * deg_to_rad) * prevSpeedY;
currentMoveSpeedY = sinf(-alpha * deg_to_rad) * prevSpeedX
+ cosf(-alpha * deg_to_rad) * prevSpeedY;
}
void Player::updateSpeed(float localX, float localY) {
// TODO: Support strafing.
currentMoveSpeedX = localX * sinf(orientation*deg_to_rad)*moveSpeed;
currentMoveSpeedY = localX * cosf(orientation*deg_to_rad)*moveSpeed;
}

View file

@ -5,9 +5,6 @@
#ifndef RAYCASTING_PLAYER_H
#define RAYCASTING_PLAYER_H
#include <cmath>
static constexpr float deg_to_rad = 3.14159265/180;
class Player {
public:
@ -17,22 +14,10 @@ public:
float y;
float orientation;
float moveSpeed = 5;
float rotationSpeed = 180;
float currentMoveSpeedX = 0;
float currentMoveSpeedY = 0;
float currentRotationSpeed = 0;
/* View properties. */
float fov = 70;
float sensorSize = 0.035; /* 35mm, about equivalent to human eye ? */
float focalLength = sensorSize / (2*tanf((fov*deg_to_rad)/2));
void move(float dx, float dy);
void rotate(float alpha);
void updateSpeed(float localX, float localY);
void rotate(int alpha);
};

134
World.cpp
View file

@ -3,7 +3,6 @@
//
#include "World.h"
#include <cmath>
World::World(int w, int h, sf::Color groundColor, sf::Color ceilingColor, std::vector<BlockType> worldMap) : w(w), h(h),
@ -93,119 +92,32 @@ void World::fillColumn(sf::RenderWindow& window, int column, float scale, sf::Co
window.draw(pixelColumn);
}
float World::castRay(float originX, float originY, float orientation) const
float World::castRay(float originX, float originY, float orientation)
{
/*
* Reference used for ray intersection computations :
* https://web.archive.org/web/20220628034315/https://yunes.informatique.univ-paris-diderot.fr/wp-content/uploads/cours/INFOGRAPHIE/08-Raycasting.pdf
* The logic is as follows :
* - This computes one set of point per edge crossings (horizontal/vertical)
* - The origin not being confined to the grid, offsets are computed to
* align the intersections properly
* - The intersections are at multiples of the tangent of the relevant
* angle for the axis of interest, and simply on successive edges of
* the grid for the other one
* - Depending on the orientation, signs must be taken into account
* to work 360°
*/
/* Offsets to get back on the grid from the ray's origin. */
float hOffsetX;
float hOffsetY;
float vOffsetX;
float vOffsetY;
float deltaX;
float deltaY;
if(orientation < 45 || orientation > 315)
{
/* Signs controlling the direction of travel. */
float hDir;
float vDir;
/* Need offset for rounding in the right direction ? */
float hRound;
float vRound;
float rads = orientation * deg_to_rad;
/* Used for vertical intersections. */
float rads_offset = (90 - orientation) * deg_to_rad;
/* Tangents used for the different axes. */
float hTan = tanf(rads);
float vTan = tanf(rads_offset);
/* Check if cos > 0 for horizontal hits formulas. */
if (orientation < 90 || orientation > 270) {
hOffsetX = ceilf(originY) - originY;
hOffsetY = ceilf(originY);
hDir = +1;
hRound = 0;
} else {
hOffsetX = originY - floorf(originY);
hOffsetY = floorf(originY);
hDir = -1;
hRound = -1;
}
hTan *= hDir;
hOffsetX *= hTan;
else if(orientation < 135)
{
/* Check if sin > 0 for vertical hits formulas. */
if (orientation < 180) {
vOffsetX = ceilf(originX);
vOffsetY = ceilf(originX) - originX;
vDir = +1;
vRound = 0;
} else {
vOffsetX = floorf(originX);
vOffsetY = originX - floorf(originX);
vDir = -1;
vRound = -1;
}
vTan *= vDir;
vOffsetY *= vTan;
else if(orientation < 225)
{
/*
* Now we have all the constants and deltas to work with, cast the ray.
* Generated points follow the formulas :
* - h-intersect : (originX + hOffsetX + hTan*i, hOffsetY + hDir*i)
* - v-intersect : (vOffsetX + vDir*i, originY + vOffsetY + vTan*i)
*/
int i = 0;
float hCheckX = originX + hOffsetX;
float hCheckY = hOffsetY;
/* Bounds + sanity check. */
while (hCheckX >= 0 && hCheckX <= w && hCheckY >= 0 && hCheckY <= h && i < h) {
if (getBlock(floorf(hCheckX), floorf(hCheckY) + hRound) == BlockType::WALL) {
break;
}
}
else
{
hCheckX += hTan;
hCheckY += hDir;
i++;
}
i = 0;
float vCheckX = vOffsetX;
float vCheckY = originY + vOffsetY;
/* Bounds + sanity check. */
while (vCheckX >= 0 && vCheckX < w && vCheckY >= 0 && vCheckY < h && i < w) {
if (getBlock(floorf(vCheckX) + vRound, floorf(vCheckY)) == BlockType::WALL) {
break;
}
vCheckX += vDir;
vCheckY += vTan;
i++;
}
/*
* We may or may not have hit something. Check which coordinates are closest
* and use those for computing the apparent size on screen.
*/
float hDist = sqrtf((originX - hCheckX)*(originX - hCheckX) +
(originY - hCheckY)*(originY - hCheckY));
float vDist = sqrtf((originX - vCheckX)*(originX - vCheckX) +
(originY - vCheckY)*(originY - vCheckY));
float finalDist = hDist > vDist ? vDist : hDist;
/* 2 Is wall height in meters. */
return player.focalLength*2/finalDist;
return 0;
}
void World::render(sf::RenderWindow& window) const
@ -231,25 +143,7 @@ void World::render(sf::RenderWindow& window) const
*/
for(int i = 0;i<window.getSize().x;i++)
{
float deltaAngle = (player.fov/window.getSize().x) * (i-window.getSize().x/2.0);
float rayAngle = player.orientation + deltaAngle;
if (rayAngle < 0) {
rayAngle += 360;
} else if (rayAngle > 360) {
rayAngle -= 360;
}
float obstacleScale = castRay(player.x, player.y, rayAngle)/player.sensorSize;
fillColumn(window, i, obstacleScale);
fillColumn(window, i, 0.5);
}
}
void World::step(const float& stepTime) {
player.move(player.currentMoveSpeedX*stepTime,
player.currentMoveSpeedY*stepTime);
/* Undo last move if the player would end up in a wall. */
if (getBlock((int)player.x, (int)player.y) != BlockType::AIR) {
player.move(-player.currentMoveSpeedX*stepTime,
-player.currentMoveSpeedY*stepTime);
}
player.rotate(player.currentRotationSpeed*stepTime);
}

25
World.h
View file

@ -23,24 +23,16 @@ class World {
public:
Player player;
World(int w, int h,
sf::Color groundColor = sf::Color{67, 137, 39},
sf::Color ceilingColor = sf::Color{39, 69, 137},
std::vector<BlockType> worldMap = {});
World(int w, int h, sf::Color groundColor = sf::Color::Green, sf::Color ceilingColor = sf::Color::Blue,
std::vector<BlockType> worldMap = {});
int getW() const;
int getH() const;
inline BlockType getBlock(float x, float y) const;
BlockType getBlock(float x, float y) const;
void setBlock(BlockType block, int x, int y, int width = 1, int height = 1);
void render(sf::RenderWindow&) const;
/**
* Move the world one step forward.
* @param stepTime delta time since last step, in seconds
*/
void step(const float& stepTime);
friend std::ostream& operator<<(std::ostream& ostream, World const & world);
private:
int w;
@ -50,16 +42,15 @@ private:
sf::Color groundColor;
sf::Color ceilingColor;
void fillColumn(sf::RenderWindow&, int column, float scale,
sf::Color wallColor = sf::Color(84,56,34)) const;
void fillColumn(sf::RenderWindow&, int column, float scale, sf::Color wallColor = sf::Color(127,127,127)) const;
/**
* Cast a ray from a given position and return the on-screen scale.
* @param originX Ray X origin, strictly positive
* @param originY Ray Y origin, strictly positive
* @param orientation Angle to cast to, in degrees between 0 and 360
* @param originX Ray X origin
* @param originY Ray Y origin
* @param orientation Angle to cast to, in degrees
* @return Scale on the screen of the hit wall.
*/
float castRay(float originX, float originY, float orientation) const;
float castRay(float originX, float originY, float orientation);
};

View file

@ -1,12 +1,22 @@
#include <iostream>
#include <SFML/Graphics.hpp>
#include "SFML/Graphics.hpp"
#include "World.h"
// TODO: Handle inputs to move player
// TODO: Raycast from player position
// TODO: Fix raycasts and use it correctly
// TODO: Render world in event loop
// TODO: Understand what the code was doing (looks like scale from fill column is the output of the raycast)
// Ref: https://lodev.org/cgtutor/raycasting.html
// Ref: http://yunes.informatique.univ-paris-diderot.fr/wp-content/uploads/cours/INFOGRAPHIE/08-Raycasting.pdf
// TODO: Update player for camera plane
// TODO: Camera plane represents screen, rays go through it proportional to the screen
// TODO: Find a way to go to edges instead of just equally split (?)
int main()
{
std::cout << "Hello, World!" << std::endl;
World world(10,10);
world.setBlock(BlockType::AIR,1,1,8,8);
world.setBlock(BlockType::WALL,4,4,2,2);
@ -17,55 +27,14 @@ int main()
world.render(window);
window.display();
sf::Event event{};
sf::Clock frameTime;
while (window.isOpen())
{
sf::Event event;
while (window.pollEvent(event))
{
if (event.type == sf::Event::Closed)
window.close();
else if (event.type == sf::Event::KeyPressed) {
switch (event.key.code) {
case sf::Keyboard::Key::Escape:
window.close();
break;
case sf::Keyboard::Key::Left:
world.player.currentRotationSpeed = -world.player.rotationSpeed;
break;
case sf::Keyboard::Key::Right:
world.player.currentRotationSpeed = world.player.rotationSpeed;
break;
case sf::Keyboard::Key::Up:
world.player.updateSpeed(1, 0);
break;
case sf::Keyboard::Key::Down:
world.player.updateSpeed(-1, 0);
break;
default:
break;
}
}
else if (event.type == sf::Event::KeyReleased) {
switch (event.key.code) {
case sf::Keyboard::Key::Left:
case sf::Keyboard::Key::Right:
world.player.currentRotationSpeed = 0;
break;
case sf::Keyboard::Key::Up:
case sf::Keyboard::Key::Down:
world.player.updateSpeed(0, 0);
break;
default:
break;
}
}
}
window.clear();
world.step(frameTime.restart().asSeconds());
world.render(window);
window.display();
}
return 0;