1
0
Fork 0

Compare commits

..

4 commits

Author SHA1 Message Date
b47052aa4d Implement moving the player
Player: Add rotation and linear speeds, as well as their current state.
Player: Allow to move in the local coordinates and compute
    world-speed equivalent.
Player: Update movement axis while rotating.

World: Add a function to advance a step.
Main: Handle key events, add world step in the main loop.
2024-01-21 22:11:46 +00:00
cad775f88e World: Implement raycaster
Implement the basic raycaster, checking every block intersection and the block
linked to that position.
Split the screen uniformally along the width.
Add data needed for camera maths in the Player class
Specify constraints on the raycast parameters.

Render the screen using the raycasts.
Call the renderer in the main loop.
2024-01-21 22:08:44 +00:00
c6b09d668c World: Use nicer custom colors 2024-01-21 20:41:19 +00:00
be78434a9c Player: Fix rotate
Rotation wasn't handled properly at all.
Properly bound between 0 and 360, and use
a proper modulo for floats.

Switch to float to have a more fluid rotation
between frames.
2024-01-21 20:31:51 +00:00
5 changed files with 218 additions and 40 deletions

View file

@ -14,15 +14,32 @@ void Player::move(float dx, float dy)
y += dy; y += dy;
} }
void Player::rotate(int alpha) void Player::rotate(float alpha)
{ {
orientation += alpha%360; orientation += fmodf(alpha, 360);
if(orientation >= 360) if(orientation > 360)
{ {
orientation -= 360; orientation -= 360;
} }
if(orientation <= 360) else if(orientation < 0)
{ {
orientation += 360; orientation += 360;
} }
/*
* Rotate the movement vector along the new angle, assumes that the only
* speed influencing the player is its own movement.
*/
float prevSpeedX = currentMoveSpeedX;
float prevSpeedY = currentMoveSpeedY;
currentMoveSpeedX = cosf(-alpha * deg_to_rad) * prevSpeedX
- sinf(-alpha * deg_to_rad) * prevSpeedY;
currentMoveSpeedY = sinf(-alpha * deg_to_rad) * prevSpeedX
+ cosf(-alpha * deg_to_rad) * prevSpeedY;
}
void Player::updateSpeed(float localX, float localY) {
// TODO: Support strafing.
currentMoveSpeedX = localX * sinf(orientation*deg_to_rad)*moveSpeed;
currentMoveSpeedY = localX * cosf(orientation*deg_to_rad)*moveSpeed;
} }

View file

@ -5,6 +5,9 @@
#ifndef RAYCASTING_PLAYER_H #ifndef RAYCASTING_PLAYER_H
#define RAYCASTING_PLAYER_H #define RAYCASTING_PLAYER_H
#include <cmath>
static constexpr float deg_to_rad = 3.14159265/180;
class Player { class Player {
public: public:
@ -14,10 +17,22 @@ public:
float y; float y;
float orientation; float orientation;
float moveSpeed = 5;
float rotationSpeed = 180;
float currentMoveSpeedX = 0;
float currentMoveSpeedY = 0;
float currentRotationSpeed = 0;
/* View properties. */
float fov = 70; float fov = 70;
float sensorSize = 0.035; /* 35mm, about equivalent to human eye ? */
float focalLength = sensorSize / (2*tanf((fov*deg_to_rad)/2));
void move(float dx, float dy); void move(float dx, float dy);
void rotate(int alpha); void rotate(float alpha);
void updateSpeed(float localX, float localY);
}; };

138
World.cpp
View file

@ -3,6 +3,7 @@
// //
#include "World.h" #include "World.h"
#include <cmath>
World::World(int w, int h, sf::Color groundColor, sf::Color ceilingColor, std::vector<BlockType> worldMap) : w(w), h(h), World::World(int w, int h, sf::Color groundColor, sf::Color ceilingColor, std::vector<BlockType> worldMap) : w(w), h(h),
@ -92,32 +93,119 @@ void World::fillColumn(sf::RenderWindow& window, int column, float scale, sf::Co
window.draw(pixelColumn); window.draw(pixelColumn);
} }
float World::castRay(float originX, float originY, float orientation) float World::castRay(float originX, float originY, float orientation) const
{ {
/* /*
* Reference used for ray intersection computations : * Reference used for ray intersection computations :
* https://web.archive.org/web/20220628034315/https://yunes.informatique.univ-paris-diderot.fr/wp-content/uploads/cours/INFOGRAPHIE/08-Raycasting.pdf * https://web.archive.org/web/20220628034315/https://yunes.informatique.univ-paris-diderot.fr/wp-content/uploads/cours/INFOGRAPHIE/08-Raycasting.pdf
* The logic is as follows :
* - This computes one set of point per edge crossings (horizontal/vertical)
* - The origin not being confined to the grid, offsets are computed to
* align the intersections properly
* - The intersections are at multiples of the tangent of the relevant
* angle for the axis of interest, and simply on successive edges of
* the grid for the other one
* - Depending on the orientation, signs must be taken into account
* to work 360°
*/ */
float deltaX; /* Offsets to get back on the grid from the ray's origin. */
float deltaY; float hOffsetX;
if(orientation < 45 || orientation > 315) float hOffsetY;
{ float vOffsetX;
float vOffsetY;
/* Signs controlling the direction of travel. */
float hDir;
float vDir;
/* Need offset for rounding in the right direction ? */
float hRound;
float vRound;
float rads = orientation * deg_to_rad;
/* Used for vertical intersections. */
float rads_offset = (90 - orientation) * deg_to_rad;
/* Tangents used for the different axes. */
float hTan = tanf(rads);
float vTan = tanf(rads_offset);
/* Check if cos > 0 for horizontal hits formulas. */
if (orientation < 90 || orientation > 270) {
hOffsetX = ceilf(originY) - originY;
hOffsetY = ceilf(originY);
hDir = +1;
hRound = 0;
} else {
hOffsetX = originY - floorf(originY);
hOffsetY = floorf(originY);
hDir = -1;
hRound = -1;
} }
else if(orientation < 135) hTan *= hDir;
{ hOffsetX *= hTan;
/* Check if sin > 0 for vertical hits formulas. */
if (orientation < 180) {
vOffsetX = ceilf(originX);
vOffsetY = ceilf(originX) - originX;
vDir = +1;
vRound = 0;
} else {
vOffsetX = floorf(originX);
vOffsetY = originX - floorf(originX);
vDir = -1;
vRound = -1;
} }
else if(orientation < 225) vTan *= vDir;
{ vOffsetY *= vTan;
}
else
{
/*
* Now we have all the constants and deltas to work with, cast the ray.
* Generated points follow the formulas :
* - h-intersect : (originX + hOffsetX + hTan*i, hOffsetY + hDir*i)
* - v-intersect : (vOffsetX + vDir*i, originY + vOffsetY + vTan*i)
*/
int i = 0;
float hCheckX = originX + hOffsetX;
float hCheckY = hOffsetY;
/* Bounds + sanity check. */
while (hCheckX >= 0 && hCheckX <= w && hCheckY >= 0 && hCheckY <= h && i < h) {
if (getBlock(floorf(hCheckX), floorf(hCheckY) + hRound) == BlockType::WALL) {
break;
} }
return 0; hCheckX += hTan;
hCheckY += hDir;
i++;
}
i = 0;
float vCheckX = vOffsetX;
float vCheckY = originY + vOffsetY;
/* Bounds + sanity check. */
while (vCheckX >= 0 && vCheckX < w && vCheckY >= 0 && vCheckY < h && i < w) {
if (getBlock(floorf(vCheckX) + vRound, floorf(vCheckY)) == BlockType::WALL) {
break;
}
vCheckX += vDir;
vCheckY += vTan;
i++;
}
/*
* We may or may not have hit something. Check which coordinates are closest
* and use those for computing the apparent size on screen.
*/
float hDist = sqrtf((originX - hCheckX)*(originX - hCheckX) +
(originY - hCheckY)*(originY - hCheckY));
float vDist = sqrtf((originX - vCheckX)*(originX - vCheckX) +
(originY - vCheckY)*(originY - vCheckY));
float finalDist = hDist > vDist ? vDist : hDist;
/* 2 Is wall height in meters. */
return player.focalLength*2/finalDist;
} }
void World::render(sf::RenderWindow& window) const void World::render(sf::RenderWindow& window) const
@ -143,7 +231,25 @@ void World::render(sf::RenderWindow& window) const
*/ */
for(int i = 0;i<window.getSize().x;i++) for(int i = 0;i<window.getSize().x;i++)
{ {
fillColumn(window, i, 0.5); float deltaAngle = (player.fov/window.getSize().x) * (i-window.getSize().x/2.0);
float rayAngle = player.orientation + deltaAngle;
if (rayAngle < 0) {
rayAngle += 360;
} else if (rayAngle > 360) {
rayAngle -= 360;
}
float obstacleScale = castRay(player.x, player.y, rayAngle)/player.sensorSize;
fillColumn(window, i, obstacleScale);
} }
}
void World::step(const float& stepTime) {
player.move(player.currentMoveSpeedX*stepTime,
player.currentMoveSpeedY*stepTime);
/* Undo last move if the player would end up in a wall. */
if (getBlock((int)player.x, (int)player.y) != BlockType::AIR) {
player.move(-player.currentMoveSpeedX*stepTime,
-player.currentMoveSpeedY*stepTime);
}
player.rotate(player.currentRotationSpeed*stepTime);
} }

23
World.h
View file

@ -23,16 +23,24 @@ class World {
public: public:
Player player; Player player;
World(int w, int h, sf::Color groundColor = sf::Color::Green, sf::Color ceilingColor = sf::Color::Blue, World(int w, int h,
sf::Color groundColor = sf::Color{67, 137, 39},
sf::Color ceilingColor = sf::Color{39, 69, 137},
std::vector<BlockType> worldMap = {}); std::vector<BlockType> worldMap = {});
int getW() const; int getW() const;
int getH() const; int getH() const;
BlockType getBlock(float x, float y) const; inline BlockType getBlock(float x, float y) const;
void setBlock(BlockType block, int x, int y, int width = 1, int height = 1); void setBlock(BlockType block, int x, int y, int width = 1, int height = 1);
void render(sf::RenderWindow&) const; void render(sf::RenderWindow&) const;
/**
* Move the world one step forward.
* @param stepTime delta time since last step, in seconds
*/
void step(const float& stepTime);
friend std::ostream& operator<<(std::ostream& ostream, World const & world); friend std::ostream& operator<<(std::ostream& ostream, World const & world);
private: private:
int w; int w;
@ -42,15 +50,16 @@ private:
sf::Color groundColor; sf::Color groundColor;
sf::Color ceilingColor; sf::Color ceilingColor;
void fillColumn(sf::RenderWindow&, int column, float scale, sf::Color wallColor = sf::Color(127,127,127)) const; void fillColumn(sf::RenderWindow&, int column, float scale,
sf::Color wallColor = sf::Color(84,56,34)) const;
/** /**
* Cast a ray from a given position and return the on-screen scale. * Cast a ray from a given position and return the on-screen scale.
* @param originX Ray X origin * @param originX Ray X origin, strictly positive
* @param originY Ray Y origin * @param originY Ray Y origin, strictly positive
* @param orientation Angle to cast to, in degrees * @param orientation Angle to cast to, in degrees between 0 and 360
* @return Scale on the screen of the hit wall. * @return Scale on the screen of the hit wall.
*/ */
float castRay(float originX, float originY, float orientation); float castRay(float originX, float originY, float orientation) const;
}; };

View file

@ -1,22 +1,12 @@
#include <iostream> #include <iostream>
#include "SFML/Graphics.hpp" #include <SFML/Graphics.hpp>
#include "World.h" #include "World.h"
// TODO: Handle inputs to move player
// TODO: Raycast from player position
// TODO: Fix raycasts and use it correctly
// TODO: Render world in event loop
// TODO: Understand what the code was doing (looks like scale from fill column is the output of the raycast)
// Ref: https://lodev.org/cgtutor/raycasting.html
// Ref: http://yunes.informatique.univ-paris-diderot.fr/wp-content/uploads/cours/INFOGRAPHIE/08-Raycasting.pdf
// TODO: Update player for camera plane
// TODO: Camera plane represents screen, rays go through it proportional to the screen
// TODO: Find a way to go to edges instead of just equally split (?) // TODO: Find a way to go to edges instead of just equally split (?)
int main() int main()
{ {
std::cout << "Hello, World!" << std::endl;
World world(10,10); World world(10,10);
world.setBlock(BlockType::AIR,1,1,8,8); world.setBlock(BlockType::AIR,1,1,8,8);
world.setBlock(BlockType::WALL,4,4,2,2); world.setBlock(BlockType::WALL,4,4,2,2);
@ -27,15 +17,56 @@ int main()
world.render(window); world.render(window);
window.display(); window.display();
sf::Event event{};
sf::Clock frameTime;
while (window.isOpen()) while (window.isOpen())
{ {
sf::Event event;
while (window.pollEvent(event)) while (window.pollEvent(event))
{ {
if (event.type == sf::Event::Closed) if (event.type == sf::Event::Closed)
window.close(); window.close();
else if (event.type == sf::Event::KeyPressed) {
switch (event.key.code) {
case sf::Keyboard::Key::Escape:
window.close();
break;
case sf::Keyboard::Key::Left:
world.player.currentRotationSpeed = -world.player.rotationSpeed;
break;
case sf::Keyboard::Key::Right:
world.player.currentRotationSpeed = world.player.rotationSpeed;
break;
case sf::Keyboard::Key::Up:
world.player.updateSpeed(1, 0);
break;
case sf::Keyboard::Key::Down:
world.player.updateSpeed(-1, 0);
break;
default:
break;
} }
} }
else if (event.type == sf::Event::KeyReleased) {
switch (event.key.code) {
case sf::Keyboard::Key::Left:
case sf::Keyboard::Key::Right:
world.player.currentRotationSpeed = 0;
break;
case sf::Keyboard::Key::Up:
case sf::Keyboard::Key::Down:
world.player.updateSpeed(0, 0);
break;
default:
break;
}
}
}
window.clear();
world.step(frameTime.restart().asSeconds());
world.render(window);
window.display();
}
return 0; return 0;
} }