Template polynomial class with unit tests

This commit is contained in:
trotFunky 2019-05-10 01:49:59 +02:00
parent 8caa238c42
commit f51d403b8e
4 changed files with 537 additions and 7 deletions

View file

@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.13)
project(snippets)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD 17)
add_executable(pM pietMondrian.cpp)
@ -29,9 +29,9 @@ else()
message(FATAL_ERROR "GTest pas trouvé")
endif()
add_executable(coincheTest gTestCoinche.cpp Coinche.cpp Coinche.h)
if(GTest_FOUND)
add_executable(coincheTest gTestCoinche.cpp Coinche.cpp Coinche.h)
target_link_libraries(coincheTest ${GTEST_BOTH_LIBRARIES})
target_link_options(coincheTest PRIVATE -pthread)
endif()
@ -46,13 +46,24 @@ target_link_libraries(parseXML pugixml)
target_include_directories(parseXML PRIVATE ${PugiXML_INCLUDE_DIR})
target_link_directories(parseXML PRIVATE ${PugiXML_INCLUDE_DIR})
if(GTest_FOUND)
add_executable(xmlTest gTestXMLParser.cpp Circle.h xmlParser.h xmlParser.cpp)
target_include_directories(xmlTest PRIVATE ${PugiXML_INCLUDE_DIR})
target_link_directories(xmlTest PRIVATE ${PugiXML_INCLUDE_DIR})
target_link_libraries(xmlTest pugixml)
if(GTest_FOUND)
target_link_libraries(xmlTest ${GTEST_BOTH_LIBRARIES})
target_link_options(xmlTest PRIVATE -pthread)
endif()
add_library(polynomial SHARED Polynomial.cpp Polynomial.tpp)
#target_link_libraries(polynomial -static)
if(GTest_FOUND)
add_executable(polynomialTest gTestPolynomial.cpp)
target_link_libraries(polynomialTest ${GTEST_BOTH_LIBRARIES})
target_link_options(polynomialTest PRIVATE -pthread)
target_link_libraries(polynomialTest polynomial)
endif()

5
snippets/Polynomial.cpp Normal file
View file

@ -0,0 +1,5 @@
//
// Created by trotfunky on 09/05/19.
//
#include "Polynomial.tpp"

318
snippets/Polynomial.tpp Normal file
View file

@ -0,0 +1,318 @@
//
// Created by trotfunky on 09/05/19.
//
#ifndef SNIPPETS_POLYNOMIAL_TPP
#define SNIPPETS_POLYNOMIAL_TPP
#include <vector>
#include <map>
#include <iostream>
#include <math.h>
template <typename T> class Polynomial;
/**
* Class allowing creation, manipulation and calculation of polynomials
* Factors are stored from the lowest power to the highest
* The polynomial has at least one factor, which defaults to zero
* @tparam T Has to be an arithmetic type (std::is_arithmetic<T>::value is true)
*/
template <typename T>
class Polynomial {
public:
Polynomial();
explicit Polynomial(const std::vector<T>&);
explicit Polynomial(const std::map<int,T>&);
template <typename T1>
explicit Polynomial(const Polynomial<T1>&);
int getDegree() const;
Polynomial<T> getNthDerivative(int n) const;
template <typename T1>
bool equals(const Polynomial<T1>&) const;
template <typename T1>
auto add(const Polynomial<T1>& operand) const -> Polynomial<decltype(static_cast<T>(0) + operand[0])>;
template <typename T1>
friend std::ostream& operator<<(std::ostream&, const Polynomial<T1>&);
template<typename T1>
T1 operator()(const T1&) const;
T operator[](int) const;
private:
std::vector<T> factors;
double factorial(unsigned int n) const;
template <typename T2>
friend class Polynomial;
};
////////////////////
/// ///
/// Definitions ///
/// ///
////////////////////
template<typename T>
Polynomial<T>::Polynomial()
{
static_assert(std::is_arithmetic<T>::value,"Polynomial must be of an arithmetic type!");
factors = {0};
}
template<typename T>
Polynomial<T>::Polynomial(const std::vector<T>& polynomialFactors) : Polynomial<T>()
{
if(polynomialFactors.size()>0)
{
factors = polynomialFactors;
}
}
template<typename T>
Polynomial<T>::Polynomial(const std::map<int, T>& polynomialFactors) : Polynomial<T>()
{
int degree = polynomialFactors.rbegin()->first;
if(degree >= 0)
{
factors.pop_back();
}
factors.reserve(degree);
for(int i = 0;i<=degree;i++)
{
auto nextFactor = polynomialFactors.find(i);
if(nextFactor != polynomialFactors.end())
{
factors.push_back(nextFactor->second);
}
else
{
factors.push_back(0);
}
}
}
template <typename T>
template <typename T1>
Polynomial<T>::Polynomial(const Polynomial<T1>& copied)
{
static_assert(std::is_arithmetic<T>::value,"Polynomial must be of an arithmetic type!");
for(const T1& factor : copied.factors)
{
factors.push_back(static_cast<T>(factor));
}
}
/**
* Returns the degree of the polynomial.
* @tparam T Type of the polynomial factors
* @return Degree of the polynomial, -1 if it is the null-polynomial
*/
template<typename T>
int Polynomial<T>::getDegree() const
{
for(int i = factors.size()-1;i>=0;i--)
{
if(factors[i] != 0)
{
return(i);
}
}
return(-1);
}
/**
* Computes the nth derivative of the polynomial
* @tparam T Polyniaml factor type
* @param n Order of the derivative
* @return Derived polynomial, null-polynomial if the order is greater than the degree
*/
template<typename T>
Polynomial<T> Polynomial<T>::getNthDerivative(int n) const
{
if(n<=0)
{
return(Polynomial<T>(*this));
}
if(n>getDegree())
{
return(Polynomial<T>());
}
std::vector<T> newFactors;
for(int i = n;i<factors.size();i++)
{
newFactors.push_back(factors[i]*factorial(i)/factorial(i-n));
}
return(Polynomial<T>(newFactors));
}
template<typename T>
double Polynomial<T>::factorial(unsigned int n) const
{
double value = 1;
for(unsigned int i = 2;i<=n;i++)
{
value *= i;
}
return(value);
}
template<typename T>
template<typename T1>
bool Polynomial<T>::equals(const Polynomial<T1>& operand) const
{
if(getDegree() != operand.getDegree())
{
return(false);
}
if(getDegree() == -1)
{
return(true);
}
const std::vector<T1>& p2Factors = operand.factors;
for(int i = factors.size();i>=0;i--)
{
if(factors[i] != p2Factors[i])
{
return(false);
}
}
return(true);
}
template<typename T>
template<typename T1>
auto Polynomial<T>::add(const Polynomial<T1>& operand) const -> Polynomial<decltype(static_cast<T>(0) + operand[0])>
{
bool isLargest = true;
int largestSize = factors.size();
int smallestSize = operand.factors.size();
if(getDegree() < operand.getDegree())
{
isLargest = false;
smallestSize = factors.size();
largestSize = operand.factors.size();
}
std::vector<decltype(static_cast<T>(0)+operand[0])> resultPolynomial = {};
resultPolynomial.reserve(largestSize);
for(int i = 0;i<smallestSize;i++)
{
resultPolynomial.push_back(factors[i]+operand[i]);
}
for(int i = smallestSize;i<largestSize;i++)
{
resultPolynomial.push_back((isLargest ? factors[i] : operand[i]));
}
return Polynomial<decltype(static_cast<T>(0)+operand[0])>(resultPolynomial);
}
////////////////////
/// ///
/// Operators ///
/// ///
////////////////////
template<typename T1,typename T2>
bool operator==(const Polynomial<T1>& p1, const Polynomial<T2>& p2)
{
return(p1.equals(p2));
}
/**
* Computes the sum of the two polynomials by adding factor by factor at first and pushing back
* the leftover factors from the largest polynomial if their are different in degree.
* @tparam T Type of the first polynomial
* @tparam R Type of the second polynomial
* @param p1 First polynomial
* @param p2 Second polynomial
* @return Sum of the two polynomials, null polynomial if both of them are null. The type is deduced from the addition
* of the first factors of the two polynomials.
*/
template<typename T1, typename T2>
auto operator+(const Polynomial<T1>& p1, const Polynomial<T2>& p2) -> Polynomial<decltype(p1[0] + p2[0])>
{
return(p1.add(p2));
}
template <typename T>
std::ostream& operator<<(std::ostream& ostream, const Polynomial<T>& polynomial)
{
if(polynomial.getDegree() < 0)
{
ostream << "0 ";
return ostream;
}
const std::vector<T>& factors = polynomial.factors;
if(factors[0] > 0)
{
ostream << factors[0] << " ";
}
else if(factors[0] < 0)
{
ostream << std::showpos << factors[0] << " ";
}
for(int i = 1;i<factors.size();i++)
{
if(factors[i] != 0)
{
ostream << std::showpos << factors[i] << "*X^" << std::noshowpos << i << " ";
}
}
return(ostream);
}
template<typename T>
template<typename T1>
T1 Polynomial<T>::operator()(const T1& input) const
{
static_assert(std::is_arithmetic<T1>::value,"Cannot evaluate polynomial at a non arithmetic value !");
if(getDegree() == -1)
{
return(0);
}
T1 returnValue = 0;
for(int i = 0;i<factors.size();i++)
{
returnValue += factors[i] * pow(input,i);
}
return(returnValue);
}
template<typename T>
T Polynomial<T>::operator[](const int index) const
{
return(factors.at(index));
}
#endif //SNIPPETS_POLYNOMIAL_TPP

View file

@ -0,0 +1,196 @@
//
// Created by trotfunky on 09/05/19.
//
#include <gtest/gtest.h>
#include "Polynomial.tpp"
class PolynomialOperationTest : public ::testing::Test
{
protected:
void SetUp() override
{
pInt = Polynomial<int>({1,2,3});
pFloat = Polynomial<float>({-1.0,0,2.0});
pLarge = Polynomial<int>({{10,1},{0,5}});
}
Polynomial<int> pInt;
Polynomial<float> pFloat;
Polynomial<int> pLarge;
};
TEST(PolynomialTest,polynomialCreation)
{
Polynomial<int> pTestInt = Polynomial<int>({1,2,3});
EXPECT_EQ(pTestInt[0],1);
EXPECT_EQ(pTestInt[1],2);
EXPECT_EQ(pTestInt[2],3);
EXPECT_EQ(2,pTestInt.getDegree());
std::cout << "Int polynomial : " << pTestInt << std::endl;
Polynomial<float> pTestFloat = Polynomial<float>({0,0,1,0});
EXPECT_EQ(pTestFloat[0],0);
EXPECT_EQ(pTestFloat[1],0);
EXPECT_EQ(pTestFloat[2],1);
EXPECT_EQ(pTestFloat[3],0);
EXPECT_EQ(2,pTestFloat.getDegree());
std::cout << "Float polynomial : " << pTestFloat << std::endl;
Polynomial<float> pTestCopy = Polynomial<float>(pTestInt);
EXPECT_EQ(pTestCopy[0],1);
EXPECT_EQ(pTestCopy[1],2);
EXPECT_EQ(pTestCopy[2],3);
std::cout << pTestCopy << " is a copy of " << pTestInt << std::endl;
Polynomial<int> pTestMapInit = Polynomial<int>({{0,1},{2,3},{10,10}});
EXPECT_EQ(pTestMapInit[0],1);
EXPECT_EQ(pTestMapInit[2],3);
EXPECT_EQ(pTestMapInit[10],10);
std::cout << "Polynomial created via a map : " << pTestMapInit << std::endl;
std::cout << std::endl;
}
TEST_F(PolynomialOperationTest,polynomialSum)
{
Polynomial<int> summedIntP = pInt + pInt;
EXPECT_EQ(summedIntP[0],2);
EXPECT_EQ(summedIntP[1],4);
EXPECT_EQ(summedIntP[2],6);
std::cout << "Summed int polynomial : " << summedIntP << std::endl;
Polynomial<float> summedFloatP = pFloat + pFloat;
EXPECT_EQ(summedFloatP[0],-2.0f);
EXPECT_EQ(summedFloatP[1],0);
EXPECT_EQ(summedFloatP[2],4.0f);
std::cout << "Summed float polynomial : " << summedFloatP << std::endl;
auto summedAuto = pInt + pFloat;
EXPECT_EQ(summedAuto[0],0);
EXPECT_EQ(summedAuto[1],2);
EXPECT_EQ(summedAuto[2],5);
summedAuto = pFloat + pInt;
EXPECT_EQ(summedAuto[0],0);
EXPECT_EQ(summedAuto[1],2);
EXPECT_EQ(summedAuto[2],5);
std::cout << "Summed auto polynomial : " << summedAuto << std::endl;
Polynomial<int> summedLarge = pInt + pLarge;
EXPECT_EQ(summedLarge[0],6);
EXPECT_EQ(summedLarge[1],2);
EXPECT_EQ(summedLarge[2],3);
for(int i = 3;i<10;i++)
EXPECT_EQ(summedLarge[i],0);
EXPECT_EQ(summedLarge[10],1);
std::cout << "Summed small and large polynomials : " << summedLarge << std::endl;
std::cout << std::endl;
}
TEST_F(PolynomialOperationTest,polynomialComparison)
{
EXPECT_TRUE(Polynomial<int>() == Polynomial<int>());
EXPECT_TRUE(Polynomial<float>() == Polynomial<int>());
Polynomial<int> pCompInt = Polynomial<int>({1,2,3});
EXPECT_TRUE(pCompInt == pInt);
EXPECT_TRUE(pInt == pCompInt);
Polynomial<float> pCompFloat = Polynomial<float>({-1.0,0,2.0});
EXPECT_TRUE(pCompFloat == pFloat);
EXPECT_TRUE(pFloat == pCompFloat);
EXPECT_TRUE(Polynomial<float>(pFloat) == pFloat);
EXPECT_TRUE(Polynomial<float>(pInt) == pInt);
EXPECT_FALSE(pInt == pFloat);
EXPECT_FALSE(pInt == Polynomial<int>());
EXPECT_FALSE(pInt == Polynomial<float>());
std::cout << std::endl;
}
TEST_F(PolynomialOperationTest,polynomialDerivation)
{
EXPECT_TRUE(pInt.getNthDerivative(0) == pInt);
EXPECT_TRUE(pFloat.getNthDerivative(0) == pFloat);
std::cout << "Testing with Polynomial<int> ..." << std::endl;
Polynomial<int> expectedIntDerivative = Polynomial<int>(std::vector<int>({2,6}));
EXPECT_TRUE(expectedIntDerivative == pInt.getNthDerivative(1));
std::cout << "First order derivative : " << pInt.getNthDerivative(1) << std::endl;
expectedIntDerivative = Polynomial<int>({6});
EXPECT_TRUE(expectedIntDerivative == pInt.getNthDerivative(2));
std::cout << "Second order derivative : " << pInt.getNthDerivative(2) << std::endl;
expectedIntDerivative = Polynomial<int>();
EXPECT_TRUE(expectedIntDerivative == pInt.getNthDerivative(3));
EXPECT_TRUE(expectedIntDerivative == pInt.getNthDerivative(10));
std::cout << "Third order derivative : " << pInt.getNthDerivative(3) << std::endl;
std::cout << "Tenth order derivative : " << pInt.getNthDerivative(10) << std::endl;
std::cout << std::endl;
std::cout << "Testing with Polynomial<float> ..." << std::endl;
Polynomial<float> expectedFloatDerivative = Polynomial<float>(std::vector<float>({0,4}));
EXPECT_TRUE(expectedFloatDerivative == pFloat.getNthDerivative(1));
std::cout << "First order derivative : " << pFloat.getNthDerivative(1) << std::endl;
expectedFloatDerivative = Polynomial<float>({4});
EXPECT_TRUE(expectedFloatDerivative == pFloat.getNthDerivative(2));
std::cout << "Second order derivative : " << pFloat.getNthDerivative(2) << std::endl;
expectedFloatDerivative = Polynomial<float>();
EXPECT_TRUE(expectedFloatDerivative == pFloat.getNthDerivative(3));
EXPECT_TRUE(expectedFloatDerivative == pFloat.getNthDerivative(10));
std::cout << "Third order derivative : " << pFloat.getNthDerivative(3) << std::endl;
std::cout << "Tenth order derivative : " << pFloat.getNthDerivative(10) << std::endl;
std::cout << std::endl;
}
TEST_F(PolynomialOperationTest,polynomialAssertion)
{
EXPECT_EQ(pInt(0),1);
EXPECT_EQ(pInt(0.0f),1);
EXPECT_EQ(pInt(1),6);
EXPECT_EQ(pInt(1.0),6);
EXPECT_EQ(pInt(-1),2);
EXPECT_EQ(pFloat(0),-1);
EXPECT_EQ(pFloat(0.0),-1);
EXPECT_EQ(pFloat(1),1);
EXPECT_EQ(pFloat(-1),1);
EXPECT_EQ(pLarge(0),5);
EXPECT_EQ(pLarge(1),6);
EXPECT_EQ(pLarge(2),1029);
EXPECT_EQ(Polynomial<bool>()(100),0);
EXPECT_EQ(Polynomial<bool>()(0),0);
}
int main(int argc, char** argv)
{
::testing::InitGoogleTest(&argc,argv);
return RUN_ALL_TESTS();
}