1
0
Fork 0
Toy-Raytracer/World.cpp
Teo-CD a0b6536432 World: make CastRay generic
Previously CastRay did the scale computation and used the player view statistics.
This makes it quite specialized, and the rest of the computations are made outside.

Move the computations in the render function and make castRay generic.
2024-01-25 22:31:39 +00:00

266 lines
7.8 KiB
C++

//
// Created by trotfunky on 27/05/19.
//
#include "World.h"
#include <cmath>
World::World(int w, int h, sf::Color groundColor, sf::Color ceilingColor, std::vector<BlockType> worldMap) :
player(0,0,0), w(w), h(h), map(std::move(worldMap)),
groundColor(groundColor), ceilingColor(ceilingColor)
{
map.resize(w*h,BlockType::WALL);
}
int World::getW() const
{
return w;
}
int World::getH() const
{
return h;
}
BlockType World::getBlock(int x, int y) const
{
return map[x + w*y];
}
BlockType World::getBlock(float x, float y) const
{
return map[static_cast<int>(x) + w*static_cast<int>(y)];
}
void World::setBlock(BlockType block, int x, int y, int width, int height)
{
for(int i = 0;i<height;i++)
{
for(int j = 0;j<width;j++)
{
if(x+j<w && y+i < h)
{
map.at((y+i)*w+x+j) = block;
}
}
}
}
std::ostream& operator<<(std::ostream& ostream, World const& world)
{
for(int i = 0;i<world.w*world.h;i++)
{
if(i%world.w == 0)
{
ostream << std::endl;
}
switch(world.getBlock(i%world.w,i/world.w))
{
case BlockType::AIR:
{
if(static_cast<int>(world.player.x) == i%world.w && static_cast<int>(world.player.y) == i/world.h)
{
ostream << "P";
}
else
{
ostream << " ";
}
break;
}
case BlockType::WALL:
{
ostream << "W";
break;
}
case BlockType::DOOR:
{
ostream << "D";
break;
}
case BlockType::WINDOW:
{
ostream << "W";
break;
}
}
}
return(ostream);
}
float World::castRay(float originX, float originY, float orientation) const
{
/*
* Reference used for ray intersection computations :
* https://web.archive.org/web/20220628034315/https://yunes.informatique.univ-paris-diderot.fr/wp-content/uploads/cours/INFOGRAPHIE/08-Raycasting.pdf
* The logic is as follows :
* - This computes one set of point per edge crossings (horizontal/vertical)
* - The origin not being confined to the grid, offsets are computed to
* align the intersections properly
* - The intersections are at multiples of the tangent of the relevant
* angle for the axis of interest, and simply on successive edges of
* the grid for the other one
* - Depending on the orientation, signs must be taken into account
* to work 360°
*/
/* Offsets to get back on the grid from the ray's origin. */
float hOffsetX;
float hOffsetY;
float vOffsetX;
float vOffsetY;
/* Signs controlling the direction of travel. */
float hDir;
float vDir;
/* Need offset for rounding in the right direction ? */
float hRound;
float vRound;
float rads = orientation * deg_to_rad;
/* Used for vertical intersections. */
float rads_offset = (90 - orientation) * deg_to_rad;
/* Tangents used for the different axes. */
float hTan = tanf(rads);
float vTan = tanf(rads_offset);
/* Check if cos > 0 for horizontal hits formulas. */
if (orientation < 90 || orientation > 270) {
hOffsetX = ceilf(originY) - originY;
hOffsetY = ceilf(originY);
hDir = +1;
hRound = 0;
} else {
hOffsetX = originY - floorf(originY);
hOffsetY = floorf(originY);
hDir = -1;
hRound = -1;
}
hTan *= hDir;
hOffsetX *= hTan;
/* Check if sin > 0 for vertical hits formulas. */
if (orientation < 180) {
vOffsetX = ceilf(originX);
vOffsetY = ceilf(originX) - originX;
vDir = +1;
vRound = 0;
} else {
vOffsetX = floorf(originX);
vOffsetY = originX - floorf(originX);
vDir = -1;
vRound = -1;
}
vTan *= vDir;
vOffsetY *= vTan;
/*
* Now we have all the constants and deltas to work with, cast the ray.
* Generated points follow the formulas :
* - h-intersect : (originX + hOffsetX + hTan*i, hOffsetY + hDir*i)
* - v-intersect : (vOffsetX + vDir*i, originY + vOffsetY + vTan*i)
*/
int i = 0;
float hCheckX = originX + hOffsetX;
float hCheckY = hOffsetY;
/* Bounds + sanity check. */
while (hCheckX >= 0 && hCheckX <= static_cast<float>(w) &&
hCheckY >= 0 && hCheckY <= static_cast<float>(h) && i < h) {
if (getBlock(floorf(hCheckX), floorf(hCheckY) + hRound) == BlockType::WALL) {
break;
}
hCheckX += hTan;
hCheckY += hDir;
i++;
}
i = 0;
float vCheckX = vOffsetX;
float vCheckY = originY + vOffsetY;
/* Bounds + sanity check. */
while (vCheckX >= 0 && vCheckX < static_cast<float>(w) &&
vCheckY >= 0 && vCheckY < static_cast<float>(h) && i < w) {
if (getBlock(floorf(vCheckX) + vRound, floorf(vCheckY)) == BlockType::WALL) {
break;
}
vCheckX += vDir;
vCheckY += vTan;
i++;
}
/*
* We may or may not have hit something. Check which coordinates are closest
* and use those for computing the apparent size on screen.
*/
float hDist = sqrtf((originX - hCheckX)*(originX - hCheckX) +
(originY - hCheckY)*(originY - hCheckY));
float vDist = sqrtf((originX - vCheckX)*(originX - vCheckX) +
(originY - vCheckY)*(originY - vCheckY));
return hDist > vDist ? vDist : hDist;
}
void World::fillColumn(sf::RenderWindow& window, unsigned int column,
float scale, sf::Color wallColor) const
{
float columnHeight = static_cast<float>(window.getSize().y)*scale;
sf::RectangleShape pixelColumn(sf::Vector2f(1,columnHeight));
pixelColumn.setPosition(static_cast<float>(column),
(static_cast<float>(window.getSize().y)-columnHeight)/2.0f);
pixelColumn.setFillColor(wallColor);
window.draw(pixelColumn);
}
void World::render(sf::RenderWindow& window) const
{
float windowX = static_cast<float>(window.getSize().x);
float windowY = static_cast<float>(window.getSize().y);
/*
* Draw ground and sky planes through half of the screen, as the walls
* will get drawn over them.
* This doesn't work if we support textures/levels.
*/
sf::RectangleShape ground = sf::RectangleShape(sf::Vector2f(windowX,windowY/2.0f));
ground.setFillColor(groundColor);
ground.setPosition(0,windowY/2.0f);
sf::RectangleShape ceiling = sf::RectangleShape(sf::Vector2f(windowX,windowY/2.0f));
ceiling.setFillColor(ceilingColor);
window.draw(ground);
window.draw(ceiling);
/*
* Throw rays and draw walls over the ceiling and ground.
* Only throws in the plane, which doesn't work for levels/3D.
*/
for(unsigned int i = 0 ; i < window.getSize().x ; i++)
{
float deltaAngle = (player.fov/windowX) * (static_cast<float>(i)-windowX/2.0f);
float rayAngle = player.orientation + deltaAngle;
if (rayAngle < 0) {
rayAngle += 360;
} else if (rayAngle > 360) {
rayAngle -= 360;
}
float obstacleScale = player.focalLength*2/(castRay(player.x, player.y, rayAngle)*player.sensorSize);
/* 2 Is wall height in meters. */
fillColumn(window, i, obstacleScale);
}
}
void World::step(const float& stepTime) {
player.move(player.currentMoveSpeedX*stepTime,
player.currentMoveSpeedY*stepTime);
/* Undo last move if the player would end up in a wall. */
if (getBlock(player.x, player.y) != BlockType::AIR) {
player.move(-player.currentMoveSpeedX*stepTime,
-player.currentMoveSpeedY*stepTime);
}
player.rotate(player.currentRotationSpeed*stepTime);
}